Exercise 2.7.1

For each of the following vector fields, plot the potential function $V(x)$ and identify all the equilibrium points and their stability.

$$
\dot{x}=x(1-x)
$$

Solution

The potential function $V(x)$ satisfies

$$
\dot{x}=x(1-x)=-\frac{d V}{d x} .
$$

Multiply both sides by -1 .

$$
\frac{d V}{d x}=x^{2}-x
$$

Integrate both sides with respect to x, setting the integration constant to zero.

$$
V(x)=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}
$$

The graph of $V(x)$ versus x is to be thought of as a two-dimensional rollercoaster. A particle on the curve at $x^{*}=0$ is unstable because the slightest nudge in either direction will send it away from $x^{*}=0$ indefinitely. A particle on the curve at $x^{*}=1$ that's nudged in either direction will return to $x^{*}=1$ because it's stable.

